Warm-Up

- 1. Write out the chemical equation for cellular respiration.
- 2. Which molecule in the equation stores the most free energy?
- 3. What type of chemical reaction(s) is respiration? (Exergonic or endergonic? Anabolic or catabolic?)
- 4. Which organelle is involved in aerobic cellular respiration?

Define:

- Glycolysis
- Respiration
- Chemiosmosis
- Phosphorylation
- Fermentation
- ATP (draw and label)
- Electrochemical gradient
- FAD \rightarrow FADH₂
- NAD+→ NADH

- What is the role of phosphofructokinase? How does it "work"?
- Explain "glycolysis".
 Where does it occur? How does it "work"?

- 1. What is the chemical equation for cellular respiration?
- 2. Remember: OILRIG
 - A. In the conversion of glucose and oxygen to CO_2 and H_2O , which molecule is reduced?
 - B. Which is oxidized?
 - C. What happens to the energy that is released in this redox reaction?
- NAD⁺ is called a(n) ______.
 Its reduced form is _____.

- What is 1 fact you remember from yesterday's sugar article?
- 2. Why is glycolysis considered an ancient metabolic process?
- 3. Where in the cell does glycolysis occur?
- 4. What are the reactants and products of glycolysis?

Mitochondria Article

Here's what!

- Summarize the main ideas in this article
- What is the research about?

So what?

- Why is the research being conducted?
- What is the importance of this work?
- What is the data showing?

Now what?

- What are the next steps?
- What do scientists hope to accomplish in the future with this information?

- **1**. Which has more energy available:
 - a. ADP or ATP?
 - b. NAD⁺ or NADH?
 - c. FAD^+ or $FADH_2$?
- 2. Where does the Citric Acid Cycle occur in the cell?
- 3. What are the main products of the CAC?

1. How is the proton gradient generated?

2. What is its purpose?

3. Describe how ATP synthase works.

- **1**. Where are the proteins of the ETC located?
- 2. Where does the ETC pump H⁺ ions into?
- 3. In cellular respiration, how many ATP are generated through:
 - A. Substrate-level phosphorylation?
 - B. Oxidative phosphorylation?

- 1. In fermentation, how is NAD⁺ recycled?
- 2. You eat a steak and salad. Which macromolecule cannot be broken down to make ATP?
- 3. Think about the structure of a fat molecule. What feature of its structure makes it a better fuel than a carbohydrate (like glucose)?
- 2. Explain where the fat goes when you lose weight.

- 1. In fermentation, how is NAD⁺ recycled?
- 2. What is the function of the enzyme phosphofructokinase?
- 3. You eat a steak and salad. Which macromolecule cannot be broken down to make ATP?
- 2. Explain where the fat goes when you lose weight.

Chapter 7: Respiration

What you need to know:

- The summary equation of cellular respiration including the source and fate of the reactants and products.
- The difference between fermentation and cellular respiration.
- The role of glycolysis in oxidizing glucose to two molecules of pyruvate while releasing free energy to form ATP.
- How pyruvate is moved from the cytosol into the mitochondria and introduced into the citric acid cycle.
- How electrons from NADH and FADH₂ are passed to a series of electron acceptors to product ATP by chemiosmosis.
- The roles of the mitochondrial membrane, proton (H⁺) gradient, and ATP synthase in generating ATP.

In open systems, cells require E to perform work (chemical, transport, mechanical)

<u>Respiration</u>: exergonic (releases E) $C_6H_{12}O_6 + 6O_2 \rightarrow 6H_2O + 6CO_2 + ATP$ (+ heat)

<u>Photosynthesis</u>: endergonic (requires E) $6H_2O + 6CO_2 + Light \rightarrow C_6H_{12}O_6 + 6O_2$

Redox Reactions (oxidation-reduction)

oxidation (donor) lose e
$$Xe^- + Y \rightarrow X + Ye^ Xe^- + Y \rightarrow X + Ye^-$$
reduction (acceptor) gain e

• Oxidation = lose e^{-} • Reduction = gain e^{-} } OiLRiG or LeoGer

$$C_{6}H_{12}O_{6} + 6O_{2} \rightarrow 6H_{2}O + 6CO_{2} + \underbrace{ATP}_{reduction}$$

© 2016 Pearson Education, Inc.

Energy Harvest

- Energy is released as electrons "fall" from organic molecules to O₂
- Broken down into steps:
 Food (Glucose) → NADH → ETC → O₂
 - Coenzyme NAD⁺ = electron acceptor
 - NAD⁺ picks up $2e^{-}$ and $2H^{+} \rightarrow NADH$ (stores E)
 - NADH carries electrons to the electron transport chain (ETC)
 - ETC: transfers e⁻ to O₂ to make H₂O; releases energy

NAD⁺ as an electron shuttle

© 2016 Pearson Education, Inc.

Electron Transport Chain

Stages of Cellular Respiration

- **1**. Glycolysis
- 2. Pyruvate Oxidation + Citric Acid Cycle (Krebs Cycle)
- Oxidative Phosphorylation (electron transport chain (ETC) & chemiosmosis)

Overview of Cellular Respiration

Cellular Respiration Stage 1: Glycolysis

© 2016 Pearson Education, Inc.

Glycolysis

- "sugar splitting"
- Believed to be ancient (early prokaryotes no O₂ available)
- Occurs in cytosol
- Partially oxidizes glucose (6C) to 2 pyruvates (3C)
- Net gain: 2 ATP + 2NADH
- Also makes 2H₂O
- No O₂ required

Stage 1: Energy Investment Stage

 Cell uses ATP to phosphorylate compounds of glucose

Stage 2: Energy Payoff Stage

- Two 3-C compounds oxidized
- For each glucose molecule:
 - 2 Net ATP produced by substrate-level phosphorylation
 - 2 molecules of NAD⁺ \rightarrow NADH

Substrate-Level Phosphorylation

- Generate small amount of ATP
 <u>Phosphorylation</u>: enzyme transfers a phosphate to other compounds
 (P) + compound
- ADP + $P_i \rightarrow ATP$

GLYCOLYSIS: Energy Investment Phase

© 2016 Pearson Education, Inc.

© 2016 Pearson Education, Inc.

Glycolysis (Summary)

Cellular Respiration Stage 2: Pyruvate Oxidation + Citric Acid Cycle

© 2016 Pearson Education, Inc.

Mitochondrion Structure

Citric Acid Cycle (matrix)

Pyruvate Oxidation

Pyruvate → Acetyl CoA (used to make citrate) CO₂ and NADH produced

© 2016 Pearson Education, Inc.

Citric Acid Cycle (Krebs)

- Occurs in mitochondrial matrix
- Acetyl CoA \rightarrow Citrate \rightarrow **CO**₂ released
- Net gain: 2 ATP, 6 NADH, 2 FADH₂ (electron carrier)
- ATP produced by substrate-level phosphorylation

Summary of Citric Acid Cycle

© 2016 Pearson Education, Inc.

http://multimedia.mcb.harvard.edu/anim_mitochondria.html

BioVisions at Harvard: The Mitochondria

Cellular Respiration Stage 3: Oxidative Phosphorylation

© 2016 Pearson Education, Inc.

Oxidative Phosphorylation

ELECTRON TRANSPORT CHAIN

- Occurs in inner membrane of mitochondria
- Produces 26-28 ATP by oxidative phosphorylation via chemiosmosis

CHEMIOSMOSIS

- H⁺ ions pumped across inner mitochondrial membrane
- H⁺ diffuse through ATP synthase (ADP → ATP)

Electron Transport Chain (ETC)

- Collection of molecules embedded in inner membrane of mitochondria
- Tightly bound protein + nonprotein components
- Alternate between reduced/oxidized states as accept/donate e⁻
- Does <u>not</u> make ATP directly
- Ease fall of e- from food to O₂
- $2H^{+} + \frac{1}{2}O_{2} \rightarrow H_{2}O$

As electrons move through the ETC, proton pumps move H⁺ across inner mitochondrial membrane

Chemiosmosis: Energy-Coupling Mechanism

- <u>Chemiosmosis</u> = H⁺ gradient across membrane drives cellular work
- Proton-motive force: use proton (H⁺) gradient to perform work
- <u>ATP synthase</u>: enzyme that makes ATP
- Use E from proton (H⁺) gradient flow of H⁺ back across membrane

© 2011 Pearson Education, Inc

Chemiosmosis couples the ETC to ATP synthesis

© 2016 Pearson Education, Inc.

ATP yield per molecule of glucose at each stage of cellular respiration

© 2016 Pearson Education, Inc.

BioFlix: Cellular Respiration

- Anaerobic Respiration: generate ATP using other electron acceptors besides O₂
 - Final e⁻ acceptors: sulfate (SO₄), nitrate, sulfur (produces H₂S)
 - Eg. Obligate anaerobes: can't survive in O₂
- Facultative anaerobes: make ATP by aerobic respiration (with O₂ present) or switch to fermentation (no O₂ available)
 - Eg. human muscle cells

Fermentation = glycolysis + regeneration of NAD⁺

Without O₂

O₂ present

Glycolysis

FERMENTATION

- Keep glycolysis going by regenerating NAD⁺
- Occurs in cytosol
- No oxygen needed
- Creates ethanol [+
 CO₂] or lactate
- **2 ATP** (from glycolysis)

RESPIRATION

- Release E from
 breakdown of food
 with O₂
- Occurs in mitochondria
- <u>O₂ required</u> (final electron acceptor)
- Produces CO₂, H₂O and up to 32 ATP

Types of Fermentation

ALCOHOL FERMENTATION

- Pyruvate \rightarrow Ethanol + CO₂
- Ex. bacteria, yeast
- Used in brewing, winemaking, baking

LACTIC ACID FERMENTATION

- Pyruvate \rightarrow Lactate
- Ex. fungi, bacteria, human muscle cells
- Used to make cheese, yogurt, acetone, methanol
- Note: Lactate build-up does NOT causes muscle fatigue and pain (old idea)

Various sources of fuel

- Carbohydrates, fats and proteins can ALL be used as fuel for cellular respiration
- Monomers enter
 <u>glycolysis</u> or <u>citric acid</u>
 <u>cycle</u> at different
 points

Phosphofructokinase (PFK)

- Allosteric enzyme that controls rate of glycolysis and citric acid cycle
- Inhibited by ATP, citrate
- Stimulated by AMP
 - AMP+ P + P \rightarrow ATP

Respiration: Big Picture

Glycolysis & Citric Acid Cycle

Oxidative Phosphorylation

Electron Transport Chain

Chemiosmosis