Warm-Up (Ch. 6 Preview)

- 1. Define the term "metabolism".
- 2. List 3 forms of energy.
- 3. Where does the energy available for nearly all living things on earth come from?

Ch. 6 Warm-Up

- 1. What are the 1st and 2nd laws of thermodynamics?
- 2. Give the definition and an example of:
 - A. Catabolic reaction
 - B. Anabolic reaction
- 3. Is the breakdown of glucose in cellular respiration <u>exergonic</u> or <u>endergonic</u>?

Ch. 6 Warm-Up

- 1. Draw and label the following: enzyme, active site, substrate.
- 2. Describe what is meant by the term *induced fit*.
- 3. What types of factors can affect an enzyme's function?

Warm-Up

This graph shows the amount of product formed over time in an enzyme-catalyzed reaction.

Sketch this graph on your sheet.

Draw additional lines to represent the following:

- a) If the substrate concentration was doubled
- b) If the substrate concentration was reduced by half
- c) If the enzyme concentrate was doubled
- d) If the enzyme concentration was reduced by half

Chapter 6 An Introduction to Metabolism

What You Need To Know:

- Exergonic reactions release free energy (ΔG is negative); endergonic reactions store free energy (ΔG is positive).
- ATP powers cellular work by coupling exergonic reactions to endergonic reactions.
- Enzymes work by lowering the energy of activation.
- The catalytic cycle of an enzyme that results in the production of a final product.
- Enzymes are specific in the reactions they catalyze because of the molecular shape of their active site.
- Factors that change the shape of the active site of enzymes and how they influence enzyme activity.
- How feedback inhibition is used to maintain appropriate levels of enzymes and enzyme products in a pathway.

Energy Dynamics

The highly complex organization of living systems requires constant input of energy and the exchange of macromolecules.

Organisms use energy to:

Maintain Organization

Reproduce

Grow

Metabolism is the totality of an organism's chemical reactions

• Manage the materials and energy resources of a cell

Metabolic rate = total amount of energy an animal uses in a unit of time

In general, the smaller the organism, the higher the metabolic rate

- <u>Catabolic pathways</u> release energy by breaking down complex molecules into simpler compounds
 - Eg. digestive enzymes break down food → release energy
- Anabolic pathways consume energy to build complex molecules from simpler ones
 - Eg. amino acids link to form muscle protein

Energy = capacity to do work

- <u>Kinetic energy (KE)</u>: energy associated with motion
 - Heat (thermal energy) is KE associated with random movement of atoms or molecules
- Potential energy (PE): stored energy as a result of its position or structure
 - Chemical energy is PE available for release in a chemical reaction
- Energy can be **converted** from one form to another
 - Eg. chemical \rightarrow mechanical \rightarrow electrical

Climbing up converts the kinetic energy of muscle movement to potential energy.

A diver has less potential energy in the water.

Thermodynamics is the study of energy transformations that occur in matter

- Closed system: isolated from its surroundings (eg. liquid in a thermos)
- Open system: energy and matter can be transferred between the system and its surroundings

Organisms = Open Systems

- A **net gain in energy** results in **energy storage** or the **growth** of an organism
- A net loss of energy results in loss of mass, and/or death of an organism

The First Law of Thermodynamics (Conservation of Energy)

The energy of the universe is constant

- Energy can be transferred and transformed
- Energy <u>cannot</u> be created or destroyed

(a) First law of thermodynamics

The Second Law of Thermodynamics

- Every energy transfer or transformation increases the entropy (disorder) of the universe
- During every energy transfer or transformation, some energy is *unusable*, often lost as heat

(b) Second law of thermodynamics

Thermoregulation

- Maintain an internal temperature within a tolerable range
- Endothermic animals use thermal energy generated by metabolism to maintain homeostatic body temperatures (birds and mammals)
- <u>Ectothermic</u> animals gain heat from external sources (invertebrates, fishes, amphibians, and nonavian reptiles)

(a) A walrus, an endotherm

(b) A lizard, an ectotherm

Endotherms vs. Ectotherms

- Free energy: part of a system's energy available to perform work
 - ΔG = change in free energy
- Exergonic reaction: energy is released
 - Spontaneous reaction
 - ∆G < 0
- Endergonic reaction: energy is required
 - Absorb free energy
 - ∆G > 0

- Less stable
- Greater work capacity

In a spontaneous change

- The free energy of the system decreases (∆G < 0)
- The system becomes more stable
- The released free energy can be harnessed to do work
 - Less free energy (lower G)
 - More stable
 - Less work capacity

(a) Exergonic reaction: energy released, spontaneous

Progress of the reaction

(b) Endergonic reaction: energy required, nonspontaneous

Progress of the reaction

- ➤A living cell is NOT at equilibrium
 - Constant flow of materials in/out of cell
- ► A cell does three main kinds of work:
 - 1. Mechanical
 - 2. Transport
 - 3. Chemical
- Cells manage energy resources to do work by <u>energy</u> <u>coupling</u>: using an *exergonic* process to drive an *endergonic* one

• ATP (adenosine triphosphate) is the cell's main energy source in energy coupling

• ATP = adenine + ribose + 3 phosphates

(a) The structure of ATP

- When the bonds between the phosphate groups are broken by hydrolysis → Energy is released
- This release of energy comes from the chemical change to a state of lower free energy, not in the phosphate bonds themselves

How ATP Performs Work

• *Exergonic* release of P_i is used to do the *endergonic* work of cell (energy coupling)

•When ATP is hydrolyzed, it becomes ADP (adenosine diphosphate)

Solute transported

(a) Transport work: ATP phosphorylates transport proteins.

- <u>Catalyst</u>: substance that can change the rate of a reaction without being altered in the process
- <u>Enzyme</u> = biological catalyst

 Speeds up metabolic reactions by lowering the <u>activation energy</u> (energy needed to start reaction by breaking bonds)

Progress of the reaction —>

Substrate Specificity of Enzymes

- **O** The reactant that an enzyme acts on is called the enzyme's substrate
- O The enzyme binds to its substrate, forming an enzymesubstrate complex
- **O** The active site is the region on the enzyme where the substrate binds

2 Substrates are held in active site by weak interactions.

2 Substrates are held in active site by weak interactions.

Substrates are converted to products.

ENZYME ACTION: CATABOLISM

ENZYME ACTION: <u>ANABOLISM</u>

Step 2

Step 3

Step 4

<u>**Induced fit</u>: ENZYME FITS SNUGLY AROUND SUBSTRATE --**"CLASPING HANDSHAKE"</u>

An enzyme's activity can be affected by:

- Temperature
- pH
- Chemicals

Enzyme Structure & Function

- Change to the molecular structure of a component in an enzymatic system may result in a change of function or efficiency of the system
- Denaturation: disrupt protein structure → reduce enzymatic activity
- Environmental pH: alter efficiency of enzyme activity; disruption of H-bonds
- In some cases, enzyme denaturation is *reversible* → enzyme regains activity

Cofactors

- <u>Cofactors</u>: nonprotein enzyme helpers such as minerals (eg. Zn, Fe, Cu)
- <u>Coenzymes</u>: organic cofactors (eg. vitamins)

Enzyme Inhibitors

- <u>Competitive inhibitor</u>: binds to the *active site* of an enzyme, competes with substrate
- Noncompetitive inhibitor: binds to another part of an enzyme → enzyme changes shape → active site is nonfunctional

ENZYME SPECIFICITY

Figure 1: Enzymesubstrate complex

Figure 2: The charges align between the enzyme and the substrate; however, the enzyme's shape will not "fit".

Figure 3: The shape of the substrate appears to fit but the charges do not align in the active site of the enzyme.

COMPETITIVE INHIBITION

NONCOMPETITIVE INHIBITION

Inhibition of Enzyme Activity

Regulation of Enzyme Activity

- To regulate metabolic pathways, the cell switches on/off the genes that encode specific enzymes
- <u>Allosteric regulation</u>: protein's function at one site is affected by binding of a regulatory molecule to a separate site (allosteric site)
 - Activator stabilizes active site
 - Inhibitor stabilizes <u>inactive</u> form
 - Cooperativity one substrate triggers shape change in other active sites → increase catalytic activity

(b) Cooperativity: another type of allosteric activation

Stabilized active form

Feedback Inhibition

- End product of a metabolic pathway shuts down pathway by binding to the allosteric site of an enzyme
- Prevent wasting chemical resources, increase efficiency of cell

Feedback Inhibition:

Organization of Enzymes Within a Cell

Mitochondrion _

The matrix contains enzymes in solution that are involved in one stage of cellular respiration.

> Enzymes for another stage of cellular respiration are embedded in the inner membrane.

Competitive Inhibitors: If it fits, it sits.