

Ch. 3b: The Structure and Function of Macromolecules

You Must Know

•The role of **dehydration synthesis** in the formation of organic compounds and **hydrolysis** in the digestion of organic compounds.

•How the sequence and subcomponents of the four groups of organic compounds determine their properties.

•The cellular functions of carbs, lipids, proteins, and nucleic acids.

How changes in these organic molecules would affect their function.

You Must Know

•The 4 structural levels of proteins and how changes at any levels can affect the activity of the protein.

•How proteins reach their final shape (**conformation**), the **denaturing** impact that heat and pH can have on protein structure, and how these changes may affect the organism.

•Directionality influences structure and function of polymers, such as nucleic acids (5' and 3' ends) and proteins (amino and carboxyl ends).

Monomers	Polymers	Macromolecules
 Small organic Used for building blocks of polymers Connects with condensation reaction (dehydration synthesis) 	 Long molecules of monomers With many identical or similar blocks linked by covalent bonds 	 Giant molecules 2 or more polymers bonded together

Dehydration Synthesis (Condensation Reaction)	Hydrolysis
Make polymers	Breakdown polymers
Monomers $ ightarrow$ Polymers	Polymers \rightarrow Monomers
$A + B \rightarrow AB$	$AB \rightarrow A + B$
$+$ \rightarrow $+$ H_2O	$+ H_2 O \longrightarrow +$

(a) Dehydration reaction: synthesizing a polymer

Dehydration Synthesis

Hydrolysis

triglyceride

glycerol

fatty acids

Proteomics: Analysis of proteins andsequencesAntibody proteinProtein from flu virus

Species	Align	ment of Amino Ad	id Sequences of	β-globin		
Human	1	VHLTPEEKSA	VTALWGKVNV	DEVGGEALGR	LLVVYPWTQR	FFESFGDLST
Monkey	1	VHLTPEEKNA	VTTLWGKVNV	DEVGGEALGR	LLLVYPWTQR	FFESFGDLSS
Gibbon	1	VHLTPEEKSA	VTALWGKVNV	DEVGGEALGR	LLVVYPWTQR	FFESFGDLST
Human	51	PDAVMGNPKV	KAHGKKVLGA	FSDGLAHLDN	LKGTFATLSE	LHCDKLHVDP
Monkey	51	PDAVMGNPKV	KAHGKKVLGA	FSDGLNHLDN	LKGTFAQLSE	LHCDKLHVDP
Gibbon	51	PDAVMGNPKV	KAHGKKVLGA	FSDGLAHLDN	LKGTFAQLSE	LHCDKLHVDP
Human	101	ENFRLLGNVL	VCVLAHHFGK	EFTPPVQAAY	QKVVAGVANA	LАНКҮН
Monkey	101	ENFKLLGNVL	VCVLAHHFGK	EFTPQVQAAY	QKVVAGVANA	LАНКҮН
Gibbon	101	ENFRLLGNVL	VCVLAHHFGK	EFTPQVQAAY	QKVVAGVANA	LАНКҮН
Data from Human: http://www.ncbi.nlm.nih.gov/protein/AAA21113.1; rhesus monkey: http://www.ncbi.nlm.nih.gov/ protein/122634; gibbon: http://www.ncbi.nlm.nih.gov/protein/122616						

1. Proteins

"Proteios" = first or primary 50% dry weight of cells Contains: C, H, O, N, S

Protein Functions + examples

- •Enzymes (lactase)
- •Defense (antibodies)
- •Storage (milk protein = casein)
- •Transport (hemoglobin)
- •Hormones (insulin)
- Receptors
- Movement (motor proteins)
- •Structure (keratin)

Overview of protein functions

Enzymatic proteins

Function: Selective acceleration of chemical reactions Example: Digestive enzymes catalyze the hydrolysis of bonds in food molecules.

Storage proteins

Function: Storage of amino acids Examples: Casein, the protein of milk, is the major source of amino acids for baby mammals. Plants have storage proteins in their seeds. Ovalbumin is the protein of egg white, used as an amino acid source for the developing embryo.

Ovalbumin

Amino acids for embryo

Defensive proteins

Function: Protection against disease Example: Antibodies inactivate and help destroy viruses and bacteria.

Transport proteins

Function: Transport of substances Examples: Hemoglobin, the iron-containing protein of vertebrate blood, transports oxygen from the lungs to other parts of the body. Other proteins transport molecules across membranes, as shown here.

Overview of protein functions

Four Levels of Protein Structure

Primary

- Linear sequence amino acids
- 20 different aa's
- peptide bonds link aa's

Amino Acid

- •R group = side chains
- •<u>Properties</u>:
 - hydrophobic
 - hydrophilic
 - ionic (acids & bases)
- •"amino" : -NH₂
- •"acid" : -COOH

CH2

CH2

CH2

ĊH,

H_aN⁺-C-C-O⁻

Lysine

(Lys or K)

н о

°____0

CH,

ĊH,

H_N+-C-C-O-

H O

Glutamic acid

(Glu or E)

NH

CH,

CH2

ĊH,

H_N+-C-C-0-

Arginine

(Arg or R)

H O

NH⁺

-NH

ĊH,

H₃N*-C-C-O

Histidine

(His or H)

H O

Nonpolar side chains; hydrophobic

© 2016 Pearson Education, Inc.

0-C

CH,

H_aN*-C-C-O

H O

Aspartic acid

(Asp or D)

© 2016 Pearson Education, Inc.

Four Levels of Protein Structure

Secondary

- Gains 3-D shape (folds, coils)
- Due to H-bonding
- Alpha (α) helix, Beta (β) pleated sheet

Basic Principles of Protein Folding

A.Hydrophobic aa's buried in interior of protein (hydrophobic interactions)

B.Hydrophilic aa's exposed on surface of protein (hydrogen bonds)

C.Acidic + Basic aa's form salt bridges (ionic bonds).

D.Cysteines can form <u>disulfide bonds</u>.

Four Levels of Protein Structure

Tertiary

•Protein folds up on itself further

Bonding between <u>side chains</u>
 (R groups) of amino acids

 H bonds, ionic bonds, disulfide bridges, hydrophobic interactions, van der Waals interactions

o3D globular shape

Four Levels of Protein Structure

Quaternary

◦ 2+ polypeptides bond together → Ex. Hemoglobin

amino acids \rightarrow polypeptides \rightarrow protein

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

<u>Chaperonins</u> assist in proper folding of proteins

Protein Structure & Folding:

https://www.youtube.com/watch?v=z6OTR0oX3_E

- Protein structure and function are sensitive to chemical and physical conditions
- Unfolds or **denatures** if **pH** and/or **temperature** are not optimal

A change in structure = A change in function

	Primary Structure	Secondary and Tertiary Structures	Quaternary Structure	Function	Red Blood Cell Shape
Normal	1 Val 2 His 3 Leu 4 Thr 5 Pro 6 Glu 7 Glu	Normal β subunit	Normal hemoglobin β	Proteins do not associate; each carries oxygen.	Normal red blood cells are full of individual hemoglobin proteins.
Sickle-cell	1 Val 2 His 3 Leu 4 Thr 5 Pro 6 Val 7 Glu	Sickle-cell β subunit	Sickle-cell hemoglobin	Hydrophobic interactions between proteins lead to aggregation; oxygen carrying capacity reduced.	Fibers of abnormal hemoglobin deform red blood cell into sickle shape.

X-ray crystallographyused to determine the3-D structure ofproteins

Genomics: Analysis of genes and genomes

II. Nucleic Acids

•Function: store hereditary info

DNA

- Double-stranded helix
- N-bases: A, G, C,
 Thymine
- Stores hereditary info
- Longer/larger
- Sugar: deoxyribose

RNA

- Single-stranded
- N-bases: A, G, C, Uracil
- Carry info from DNA to ribosomes
- tRNA, rRNA, mRNA, RNAi
- Sugar: ribose

• Nucleic acids are *polymers* of nucleotides

A nucleotide monomer has

3 parts:
Sugar
Phosphate
Nitrogen Base

Nucleotide Structure

Phosphate group:

0 || 0⁻-P-O-

Deoxyribonucleotides:

Phosphate group

Deoxyribose

Pyrimidines

Purines

Adenine

Guanine

Cytosine

Thymine

Information flow in a cell: DNA \rightarrow RNA \rightarrow protein

III. Carbohydrates

- Fuel and building material
- Include simple sugars (fructose) and polymers (starch)
- Ratio of 1 carbon: 2 hydrogen: 1 oxygen or CH₂O (empirical formula)
- monosaccharide \rightarrow disaccharide \rightarrow polysaccharide
- Monosaccharides = monomers (eg. glucose, ribose)
- Polysaccharides:
 - <u>Storage</u> (plants-starch, animals-glycogen)
 - <u>Structure</u> (plant-cellulose, arthropod-chitin)

Differ in position & orientation of glycosidic linkage

Pentose: five-carbon sugar (C₅H₁₀O₅)

Linear and ring forms of glucose

(a) Linear and ring forms

Carbohydrate synthesis

(a) Dehydration reaction in the synthesis of maltose

(b) Dehydration reaction in the synthesis of sucrose

Cellulose vs. Starch

oTwo Forms of Glucose: α glucose and β glucose

Cellulose vs. Starch

oStarch = α glucose monomers oCellulose = β glucose monomers

Storage polysaccharides: Starch (plants) and Glycogen (animals)

Structural polysaccharides: Cellulose & Chitin (exoskeleton)

Chitin forms the exoskeleton of arthropods.

IV. Lipids

A.Fats (triglycerides)

- Store energy/insulate against heat loss/protect internal organs
- Glycerol + 3 Fatty Acids
- Saturated, unsaturated, polyunsaturated

B.Steroids: cholesterol

- Component of cell membranes
- Precursor of other molecules like hormones
- C.Phospholipids: lipid bilayer of cell membrane
 - hydrophilic (polar head
 - hydrophobic tails

Glycerol

(a) One of three dehydration reactions in the synthesis of a fat

(b) Fat molecule (triacylglycerol)

(a) Saturated fat

(b) Unsaturated fat

Saturated	Unsaturated	Polyunsaturated
"saturated" with H	Have some C=C, result in kinks	
In animals	In plants	
Solid at room temp.	Liquid at room temp.	
Eg. butter, lard	Eg. corn oil, olive oil	

Cholesterol, a steroid

The structure of a phospholipid

Hydrophobic/hydrophilic interactions make a phospholipid bilayer

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Components	Examples	Functions
R H H H H C C C O H O H C O C O	 Enzymes Structural proteins Storage proteins Transport proteins Hormones Receptor proteins Motor proteins Defensive proteins 	 Catalyze chemical reactions Provide structural support Store amino acids Transport substances Coordinate organismal responses Receive signals from outside cell Function in cell movement Protect against disease

© 2016 Pearson Education, Inc.

Components	Examples	Functions
Nitrogenous base Phosphate group	DNA: • Sugar = deoxyribose • Nitrogenous bases = C, G, A, T • Usually double-stranded	Stores hereditary information
Nucleotide monomer	RNA: • Sugar = ribose • Nitrogenous bases = C, G, A, U • Usually single-stranded	Various functions in gene expression, including carrying instructions from DNA to ribosomes

Components	Examples	Functions
	Monosaccharides: glucose, fructose	Fuel; carbon sources that can be converted to other molecules or
н Д н	Disaccharides: lactose, sucrose	combined into polymers
HOHHOH HOHOH HOH Monosaccharide monomer	Polysaccharides: • Cellulose (plants) • Starch (plants) • Glycogen (animals) • Chitin (animals and fungi)	 Strengthens plant cell walls Stores glucose for energy Stores glucose for energy Strengthens exoskeletons and fungal cell walls

Components	Examples	Functions
Glycerol 3 fatty acids	Triacylglycerols (fats or oils): glycerol + three fatty acids	Important energy source
Head with P 2 fatty acids	Phospholipids: glycerol + phosphate group + two fatty acids	Lipid bilayers of membranes Hydrophobic tails Hydrophilic heads
Steroid backbone	Steroids: four fused rings with attached chemical groups	 Component of cell membranes (cholesterol) Signaling molecules that travel through the body (hormones)