CH. 2A WARM-UP

- List 1 trace mineral found in living things and its purpose in the body.
- What is the difference between a polar and nonpolar substance? Name an example of each.
- What types of molecules can form hydrogen bonds? Explain.
- Draw a possible chemical structure diagram of c₆h₁₂o₆.

CH. 2B WARM-UP

- Explain how a water strider can seem to "walk" on water.
- 2. Name 3 examples of polar substances.
- 3. Name 3 examples of nonpolar substances.
- 4. Explain what is the meant by the phrase:
 "structure dictates function" in your own words.
 (Give an example of this in biology don't use the morphine example from lecture)

CH. 2B WARM-UP

1.What property of water allows a water strider to "walk" on water?

2.Contrast <u>adhesion</u> and <u>cohesion</u>. Give an example of each.

()

3.Contrast <u>hydrophobic</u> and <u>hydrophilic</u> substances. Give an example of each.

Properties of Water

CHAPTER 2 – PART B

YOU MUST KNOW:

- The importance of hydrogen bonding to the properties of water.
- Four unique properties of water and how each contributes to life on earth.
- How to interpret the pH scale.
- How changes in pH can alter biological systems.
- The importance of buffers in biological systems.

WATER IS A POLAR MOLECULE

Unequal sharing of e⁻ between O and H

 Hydrogen bond: slightly negative o attracted to slightly positive h of nearby molecule

• H_2 o can form up to 4 bonds

FOUR EMERGENT PROPERTIES OF WATER

1. COHESIVE BEHAVIOR

COHESION = H-bonding between like molecules

 Surface tension = measure of how difficult it is to break or stretch surface of liquid

ALSO... ADHESION

ADHESION = bonding between <u>unlike</u> molecules

• Adhesion of H_2O to vessel walls counters \downarrow pull of gravity

IN ACTION: TRANSPIRATION = MOVEMENT OF H_2O UP PLANTS

 H_2O molecules cling to each other by cohesion; they cling to xylem tubes by adhesion

© 2016 Pearson Education, Inc.

BIOFLIX: WATER TRANSPORT IN PLANTS

2. MODERATION OF TEMPERATURE

- Thermal energy (heat) = total amount of kinetic energy (KE) in system
- <u>Temperature</u> = measures *intensity* of <u>heat</u> due to <u>average</u> KE of molecules

Which has higher temp? More thermal energy?

HIGH SPECIFIC HEAT

- Change temp less when absorbs/loses heat
- Large bodies of water absorb and store more heat
 - \rightarrow warmer coastal areas
- Create stable marine/land environment
- Humans ~65% $H_2O \rightarrow$ stable temp, resist temp.

EVAPORATIVE COOLING

- Water has high heat of vaporization
- Molecules with greatest KE leave as gas
- Stable temp in lakes & ponds
- Cool plants
- Human sweat

3. EXPANSION UPON FREEZING

Insulation by ice

- less dense, floating ice insulates liquid H₂O below
- Life exists under frozen surface (ponds, lakes, oceans)
- Ice = solid habitat (polar bears)

4. THE SOLVENT OF LIFE

- <u>Solution</u> = liquid, homogeneous mixture of 2+ substances
- <u>Solvent</u> = dissolving agent (liquid)
- <u>Solute</u> = dissolved substance
- Water is the universal solvent
 - Remember: "LIKE DISSOLVES LIKE"

Figure 2.22 A water-soluble protein

4. SOLVENT OF LIFE

HYDROPHILIC	HYDROPHOBIC	
Affinity for H ₂ O	Repel H ₂ O	
Polar, ions	Non-polar	
Cellulose, sugar, salt	Oils, lipids	
Blood	Cell membrane	

WATER CHEMISTRY

$H_2O \iff H^+ + OH^-$ (GAINS PROTON) $H^+ + H_2O \rightarrow H_3O^+$ (HYDRONIUM ION) (LOSES PROTON) $H_2O - H^+ \rightarrow OH^-$ (HYDROXIDE ION)

ACIDS AND BASES

ACIDS AND BASES

- <u>ACID</u> = INCREASES H⁺ CONCENTRATION (HCI)
- <u>BASE</u> = REDUCES H⁺ CONCENTRATION (NaOH)
- Most biological fluids are pH 6-8

H⁺ AND OH⁻ IONS

© 2016 Pearson Education, Inc.

Figure 2.23 The pH scale and pH values of some aqueous solutions

CALCULATING pH

$[H^+][OH^-] = 10^{-14}$

* IF $[H^+] = 10^{-6} \text{ M}$, THEN $[OH^-] = 10^{-8}$

 $PH = -LOG [H^+]$

1. IF $[H^+] = 10^{-2}$

• $-LOG \ 10^{-2} = -(-2) = 2$

• THEREFORE, pH = 2

• -LOG $10^{-4} = -(-4) = 4$

• THEREFORE, pH = 4

2. IF $[OH^{-}] = 10^{-10}$

• $[H^+] = 10^{-4}$

BUFFERS

<u>BUFFERS</u>: minimize changes in concentration of H⁺ and OH⁻ in a solution (weak acids and bases)

- Buffers keep blood at ph ~7.4
- If blood drops to 7 or up to 7.8 \rightarrow death

Carbonic acid – bicarbonate system:

Important buffers in blood plasma

H_2CO_3 (CARBONIC ACID) \rightarrow HCO_3^- (BICARBONATE) + H^+

OCEAN ACIDIFICATION:

Threat to Coral Reef Ecosystems

@ 2011 Pearson Education, In

 CO_2 + Seawater \rightarrow Carbonic acid \rightarrow Lowers ocean pH

H ₂ O Property	Chemical Explanation	Examples of Benefits to Life
Cohesion	•polar •H-bond •like-like	个gravity plants, trees
Adhesion	•H-bond •unlike-unlike	plants→ xylem blood→veins
Surface Tension	diff. in stretchbreak surfaceH-bond	bugs→water
Specific Heat	•Absorbs & retains E •H-bond	ocean \rightarrow mod temp \rightarrow protect marine life
Evaporation	•liquid→gas •KE	Cooling Homeostasis
Universal Solvent	•Polarity→ionic •H-bond	Good dissolver solvent