Ch. 12 Warm-Up

- A white-eyed female fruit-fly is mated with a red-eyed male. What genotypes and phenotypes do you predict for the offspring?
- 2. Neither Tim nor Rhoda has Duchenne muscular dystrophy (Xlinked recessive disorder), but their firstborn son has it. What is the probability their 2nd child will have it?
- 3. Colorblindness is a sex-linked recessive trait. A colorblind male and a female with normal vision have a son who is colorblind. What are the parents' genotypes?

Ch. 12 Warm-Up

- 1. What is a Barr body?
- 2. How are linkage maps constructed? (See. Fig. 12.11 in your textbook, *BIF 2e*).
- Determine the sequence of genes along a chromosome based on the following recombination frequencies: A-B, 8 map units; A-C, 19 map units; A-D, 20 map units; B-C, 11 map units; B-D, 28 map units.
- 4. What does a frequency of recombination of 50% indicate?

Ch. 12 Warm-Up

1. What is the pattern of inheritance of the trait (shaded square/circle) shown in the pedigree?

2. How many chromosomes are in a human cell that is:
a) Diploid?
b) Haploid?
c) Triploid?

The Chromosomal Basis Of Inheritance CHAPTER 12

© 2016 Pearson Education, Inc.

@ 2011 Pearson Education, Inc.

what you must know:

- How the chromosome theory of inheritance connects the physical movement of chromosomes in meiosis to Mendel's laws of inheritance.
- The unique pattern of inheritance in sex-linked genes.
- How alteration of chromosome number or structurally altered chromosomes (deletions, duplications, etc.) can cause genetic disorders.
- How genetic imprinting and inheritance of mitochondrial DNA are exceptions to standard Mendelian inheritance.

MORGAN SHOWED THAT MENDELIAN INHERITANCE HAS ITS PHYSICAL BASIS IN THE BEHAVIOR OF CHROMOSOMES

Chromosome Theory Of Inheritance

 Genes have specific loci (positions) along chromosomes

 Chromosomes undergo segregation and independent assortment

Chromosomes tagged to reveal a specific gene (yellow).

Thomas Hunt Morgan

- *Drosophila melanogaster* fruit fly
 - Fast breeding, 4 prs. chromosomes (XX/XY)
- <u>Sex-linked gene</u>: located on X or Y chromosome
 - Red-eyes = wild-type; white-eyes = mutant
 - Specific gene carried on specific chromosome

Sex determination varies between animals

Concept 12.2

SEX-LINKED GENES EXHIBIT UNIQUE PATTERNS OF INHERITANCE

Sex-linked Genes
Sex-linked gene on X or Y
Females (XX), male (XY)
Eggs = X, sperm = X or Y

- Fathers pass X-linked genes to daughters, but not sons
- Males express recessive trait on the single X (*hemizygous*)
- Females can be affected or carrier

© 2016 Pearson Education, Inc.

Transmission of X-linked recessive traits

Sex-linked Disorders Colorblindness Duchenne muscular dystrophy •Hemophilia

Figure 4. Partial pedigree of Queen Victoria and her descendants. Hemophiliac males are indicated by black squares.

X-Linked Genetics Practice Problem

A man with red-green colorblindness (a recessive, sex-linked condition) marries a woman with normal vision whose father was colour-blind. What is the probability that they will have a color-blind daughter? That their first son will be colour-blind?

	Xp	Y	
Хв	ХВХр	ΧвΥ	Ther daug
Xp	XþXþ	Xþ	Ther son

There's a 25% chance of a colour-blind daughter

Theres a 25% chance of a colour- blind son

X Inactivation

<u>**Barr body</u>** = inactive X chromosome; regulate gene dosage in females during embryonic development</u>

Human Development

- Y chromosome required for development of testes
- Embryo gonads indifferent at 2 months
- <u>SRY gene</u>: sex-determining region of Y
- Codes for protein that regulates other genes

Concept 12.3

LINKED GENES TEND TO BE INHERITED TOGETHER BECAUSE THEY ARE LOCATED NEAR EACH OTHER ON THE SAME CHROMOSOME

Linked Genes

 Genes located near each other on same chromosome tend to be inherited together

<u>Genetic Recombination</u>: production of offspring with combination of traits different from either parent

- If offspring look like parents \rightarrow parental types
- If different from parents \rightarrow recombinants

Calculating Recombination Frequency

Recombination Frequency =

Recombinants

x 100%

Total # Offspring

Sample Problem 1: Calculate the recombination frequency

- 244 yellow-round
- 256 green-wrinkled
- 251 yellow-wrinkled
- 249 green-round

Sample Problem 2: Calculate the recombination frequency

- Original homozygous parents (P): Gray body, normal wings x black body, vestigial wings → F₁ dihybrid offspring
- Dyhybrid testcross (F₁): Gray, normal (heterzygous) x Black, vestigial (homozygous recessive)

If results **do not** follow Mendel's Law of Independent Assortment, then **the genes are probably linked**

Experiment P Generation (homozygous) Wild type Double mutant × (gray body, (black body, normal wings) vestigial wings) bb vg vg b+ b+ vg+ vg+ F, dihybrid testcross Homozygous recessive (black Wild-type F, dihybrid X body, vestigial (gray body, normal wings) wings) b⁺ b vg⁺ vg bb vq vq Q Testcross offspring Eggs (b+ vg b vg b va Wild type Black Gray Black (gray normal) vestigial vestigial normal b vg Sperm bb vg vg b⁺b vg vg bb vg⁺ vg b⁺b vg⁺vg PREDICTED RATIOS Genes on different 1 1 1 . 1 chromosomes: Genes on same 0 1 0 chromosome: Results 965 944 206 185 2 : © 2016 Pearson Education, Inc.

<u>Crossing Over</u>: explains why some linked genes get separated during meiosis

The further apart 2 genes on same chromosome, the higher the probability of crossing over and the higher the recombination frequency

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Linkage Map: genetic map that is based on % of crossover events

- 1 map unit = 1% recombination frequency
- Express relative distances along chromosome
- 50% recombination = far apart on same chromosome or on 2 different chromosomes

Partial genetic (linkage) map of a Drosophila chromosome

Linkage Map Sample Problem

Genes A, B and C are located on the same chromosome. Testcrosses show that the recombination frequency between A and B is 28% and between A and C is 12%. Can you determine the linear order of these genes? Explain.

Exceptions To Mendelian Inheritance

Genomic Imprinting

- <u>Genomic imprinting</u>: phenotypic effect of gene depends on whether from M or F parent
- <u>Methylation</u>: silence genes by adding methyl groups to DNA

Mutant *Igf2* allele inherited from mother

Normal-sized mouse (wild type)

Normal *Igf2* allele is expressed.

Mutant *Igf2* allele is not expressed.

Mutant *Igf2* allele inherited from father

Dwarf mouse (mutant)

Mutant *Igf2* allele is expressed.

Non-Nuclear DNA

- Some genes located in **organelles**
 - Mitochondria, chloroplasts, plastids
 - Contain small circular DNA

Maternal Inheritance:

- In animals: mitochondria transmitted by the egg and not sperm
- In plants: mitochondria and chloroplasts transmitted in ovule and not pollen

Variegated (striped or spotted) leaves result from mutations in pigment genes in plastids, which generally are inherited from the maternal parent.

Nuclear DNA Inherited from all ancestors

Mitochondrial DNA (mtDNA)

Inherited from a maternal lineage

Concept 12.4

ALTERATIONS OF CHROMOSOME NUMBER OF STRUCTURE CAUSE SOME GENETIC DISORDERS

Genetic Testing

Reasons for Genetic Tests:

- Diagnostic testing (genetic disorders)
- Presymptomatic & predictive testing
- Carrier testing (before having children)
- Pharmacogenetics (medication & dosage)
- Prenatal testing
- Newborn screening
- Preimplantation testing (embryos)

Prenatal Testing

- May be used on a fetus to detect genetic disorders
- <u>Amniocentesis</u>: remove amniotic fluid around fetus to culture for karyotype
- <u>Chorionic villus sampling</u>: insert narrow tube in cervix to extract sample of placenta with fetal cells for karyotype

Karyotyping can detect nondisjunctions.

Down Syndrome = Trisomy 21

<u>Nondisjunction</u>: chromosomes fail to separate properly in Meiosis I or Meiosis II

Nondisjunction

- <u>Aneuploidy</u>: abnormal # chromosomes
 - Monosomic (1 copy \rightarrow 2n-1)
 - Trisomic (3 copies \rightarrow 2n+1)
- <u>Polyploidy</u>: 2+ complete sets of chromosomes
 - triploid (3n) or tetraploid (4n)
 - rare in animals, frequent in plants (wheat, strawberries)

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

A tetraploid mammal. Scientists think this species may have arisen when an ancestor doubled its chromosome # by errors in mitosis or meiosis.

Nondisjunction

XXXXY, Klinefelter's Syndrome

Klinefelter Syndrome: 47XYY, 47XXY

Nondisjunction

Turner Syndrome = 45XO

Chromosomal Mutations

© 2016 Pearson Education, Inc.

Translocation associated with chronic myelogenous leukemia (CML) \rightarrow cancer

Review Questions

1. What is the pattern of inheritance of the trait (shaded square/circle) shown in the pedigree?

- 2. How many chromosomes are in a human cell that is:
 - a) Diploid?b) Triploid?c) Monosomic?d) Trisomic?

Chi-Squared Analysis Practice

Two true-breeding Drosophila are crossed: a normal-winged, red-eyed female and a miniature-winged, vermillion-eyed male. The F_1 offspring all have normal wings and red eyes. When the F_1 offspring are crossed with miniature-winged, vermillion-eyed flies, the following offspring resulted:

- 233 normal wing, red eye
- 247 miniature wing, vermillion eye
- 7 normal wing, vermillion eye
- 13 miniature wing, red eye

What types of conclusions can you draw from this experiment? Explain your answer.