Ch. 11 Warm Up

1. Who was Gregor Mendel and what was his major contribution to science?
2. Draw Punnett Squares to show the outcomes of the following crosses:
A. AAX aa
B. Aa X aa
C. Aa XAa

Ch. 11 warm Up

1. What is a test cross? How is it used?
2. $R=$ tongue roller, $r=$ nonroller

What would be the genotypic and phenotypic ratios for a cross between a heterozygous tongue roller and a non-roller?
3. Given: $D=$ dimples, $d=$ no dimples

What traits would the children of 2 parents (Rrdd and rrDd) have?

Ch. 11 Warm Up

1. What is the probability that the following pair will produce the indicated offspring?

- AABBCC X aabbcc -> AaBbCc
- AABbCc X AaBbCc -> AAbbCC

2. Cross $A a B b \times$ Aabb. What is the probability of A \qquad B__? That the baby will phenotypically resemble parent 1?
3. Mom is $A+$. She has 2 children, one is $O+$ and the other is B-. (Note: Rh+ is RR or Rr, and Rh- is rr) What are the father's possible genotypes?

Ch. 11 warm Up

1. What is the probability that the following cross will produce the indicated offspring?
A. $R R \times R r \rightarrow R R$
B. $A A B B \times$ aabb $\rightarrow \mathrm{AaBb}$
C. $A A B b C c \times A a B b C c \rightarrow A A b b C C$
2. A couple has 2 children, both blonds with brown eyes. The parents are both brown eyed (BB), one with blond hair (rr) and one red (Rr). What is the probability the next child is a brown eyed redhead?

What You Need To Know:

- Terms associated with genetics problems: P, $\mathrm{F}_{1}, \mathrm{~F}_{2}$, dominant, recessive, homozygous, heterozygous, phenotype, and genotype.
- How to derive the proper gametes when working a genetics problem.
- The difference between an allele and a gene.
- How to read a pedigree.
- How to use data sets to determine Mendelian patterns of inheritance.

Gregor Mendel

- Austrian monk
- Brought experimental and quantitative approach to genetics

- Bred pea plants to study inhertance
-Why peas?
- Control mating (self- vs. crosspollination)
- Many varieties available
- Short generation time

- P (parental) generation = true breeding plants
- F_{1} (first filial) generation = offspring
- F_{2} (second filial) generation $=F_{1}$ offspring

7 characters in pea plants

Dominant vs. Recessive (expressed) or (hidden)

Mendel's Principles

1. Alternate version of genes (alleles) cause variations in inherited characteristics among offspring.
2. For each character, every organism inherits one allele from each parent.
3. If 2 alleles are different, the dominant allele will be fully expressed; the recessive allele will have no noticeable effect on offspring' s appearance.
4. Law of Segregation: the 2 alleles for each character separate during gamete formation.

Alleles: alternate versions of a gene

Appearance: Purple flowers White flowers

Law of
Segregation

PGeneration

Genetic makeup:
Gametes: PP pp

F_{1} Generation
Appearance: Genetic makeup:
Gametes:
Purple flowers Pp
$1 / 2$ P $1 / 2 \boldsymbol{P}$
Sperm from
$F_{1}(P p)$ plant
F_{2} Generation
$F_{1}(P p)$ plant

- homozygous = 2 same alleles (PP or pp)
- heterozygous $=2$ different alleles (Pp)

Ratio 3:1

Genotype

Ratio 1:2:1

- Phenotype: expressed physical traits
- Genotype: genetic make-up

Punnett Square

- Device for predicting offspring from a cross
- Example: Pp x Pp (P=purple, $p=$ white)

Genotypic Ratio:
Phenotypic Ratio:

Testcross: used to determine if dominant trait is unknown (homozygous or heterozygous?) by crossing with recessive (pp)

TECHNIQUE

RESULTS

All offspring purple

$1 / 2$ offspring purple and $1 / 2$ offspring white

Law of Independent Assortment:

- Each pair of alleles segregates (separates) independently during gamete formation
- Eg. color is separate from shape

Monohybrid Cross: study 1 character

- eg. flower color

Dihybrid Cross: study 2 characters

- eg. flower color \& seed shape

Dihybrid Cross

- Example: AaBb xAaBb

The laws of probability govern Mendelian inheritance

Multiplication Rule:

- Probability that $2+$ independent events will occur together in a specific combination \rightarrow multiply probabilities of each event
- Ex. 1: probability of throwing 2 sixes
- $1 / 6 \times 1 / 6=1 / 36$
- Ex. 2: probability of having 5 boys in a row
- $1 / 2 \times 1 / 2 \times 1 / 2 \times 1 / 2 \times 1 / 2=1 / 32$
- Ex. 3: If cross AABbCc x AaBbCc, probability of offspring with AaBbcc is:
- Answer: $1 / 2 \times 1 / 2 \times 1 / 4=1 / 16$

The laws of probability govern Mendelian inheritance

Addition Rule:

- Probability that $2+$ mutually exclusive events will occur \rightarrow add together individual probabilities
- Ex. 1: chances of throwing a die that will land on 4 or 5?
- $1 / 6+1 / 6=1 / 3$

Segregation of alleles and fertilization as chance events

Extending Mendelian Genetics

The relationship between genotype and phenotype is rarely simple

Complete Dominance:

heterozygote and homozygote for dominant allele are indistinguishable

- Eg. YY or Yy = yellow seed

Incomplete Dominance: F_{1} hybrids have appearance that is between that of 2 parents

- Eg. red x white $=$ pink flowers

Codominance: phenotype of both alleles is expressed

- Eg. red hair x white hairs = roan horses

Multiple Alleles: gene has 2+ alleles

- Eg. human ABO blood groups
- Alleles $=I^{A}, I^{B}$, i
- $I^{A}, I^{B}=$ Codominant
(a) The three alleles for the ABO blood groups and their carbohydrates

Allele	$\boldsymbol{I}^{\boldsymbol{A}}$	$\boldsymbol{I}^{\boldsymbol{B}}$	\boldsymbol{i}
Carbohydrate	$\mathrm{A} \triangle$	$\mathrm{B} \bigcirc$	none

(b) Blood group genotypes and phenotypes

Genotype	$I^{A} I^{A}$ or $I^{A} i$	$I^{B} I^{B}$ or $I^{B} \boldsymbol{i}$	$I^{A} I^{B}$	ii
Red blood cell appearance		B	AB	$\mathbf{0}$
Phenotype (blood group)	A	B		

Blood Typing

Phenotype
 (Blood Group)

Genotype(s)

Type A $\left.I^{A}\right|^{A}$ or $I^{A} i$
Type B$\left.\left.\right|^{B}\right|^{B}$ or $\left.\right|^{B i}$
Type AB$\left.\left.\right|^{A}\right|^{B}$
Type Oii

Practice Problem \#1:

- A man who is heterozygous with type A blood marries a woman who is homozygous with type B blood. What possible blood types might their children have?

Blood Transfusions

- Blood transfusions must match blood type
- Mixing of foreign blood \rightarrow clumping \rightarrow death
- Rh factor: protein found on RBC's (Rh+ = has protein, Rh- = no protein)

English

Africans (Zimbabwe)

SE Asians (Laos)

Native Americans

Indians

Australian Aborigines

Practice Problem \#2

- Babies Jane (blood type B), John (blood type O), and Joe (blood type AB) were mixed up in the hospital. Who are their parents?
- Couple \#1: A, A
- Couple \#2: A,B
- Couple \#3: B,0

Polygenic Inheritance: the effect of 2 or more

 genes acting upon a single phenotypic character (eg. skin color, height)

Nature and Nurture: both genetic and environmental factors influence phenotype

(c) 2011 Pearson Education, Inc.

Hydrangea flowers vary in shade and intensity of color depending on acidity and aluminum content of the soil.

Mendelian Inheritance in Humans

Pedigree: diagram that shows the relationship between parents/offspring across $2+$ generations

Woman $=\bigcirc$
Man = \square
Trait expressed:

Pedigree Analysis: Widow's Peak Trait

Key

| \square Male | \square
 Male with
 the trait | \square | Mating |
| :--- | :--- | :--- | :--- | :--- |
| FemaleFemale with
 the trait | \square | \square | Offspring, in
 birth order
 (first-born on left) | 1st generation

(grandparents)

2nd generation (parents, aunts, and uncles)

3rd generation (two sisters)

(a) Is a widow's peak a dominant or recessive trait?

Pedigree Analysis: PTC Tasting

Key
Male
Male with the traitFemale
 Mating Offspring, in birth order (first-born on left)

1st generation (grandparents)

2nd generation (parents, aunts, and uncles)

3rd generation (two sisters)

Cannot taste PTC

(b) Is the inability to taste a chemical called PTC a dominant or recessive trait?
© 2016 Pearson Education, Inc.

Practice Problem \#3

The pedigree below traces the inheritance of alkaptonuria, a biochemical disorder. Affected individuals are shaded. Does alkaptonuria appear to be caused by adominant or recescive allele?

Genetic Disorders

Autosomal Recessive

- Albinism
- Cystic fibrosis (CF)
- Tay-Sachs disease
- Sickle-cell disease
- Phenylketonuria (PKU)

Autosomal Dominant

- Achondroplasia
- Huntington's disease (HD)
- Lethal dominant allele

Multifactorial Disorders

- Heart disease
- Diabetes
- Cancer
- Alcoholism
- Mental illnesses (schizophrenia, bipolar disorder)

Genetic counseling

1

1Has genetic condition No condition

Practice Problems

1. Cystic Fibrosis is an autosomal recessive disorder. What are the chances that 2 carriers for this disease will have a child with CF?
2. Huntington's Disease is an autosomal dominant disorder. If a woman with this disease marries a normal man, what are the chances that their children will have the disease?

Relationship among alleles of a single gene	Description	
Complete dominance of one allele	Heterozygous phenotype same as that of homo- zygous dominant	
Incomplete dominance of either allele	Heterozygous phenotype intermediate between the two homozygous phenotypes	$\boldsymbol{l}^{\text {Both phenotypes }}$
Codominance		
heterozygotes		

Relationship among two or more genes	Description	Example
Epistasis	The phenotypic expression of one gene affects the expression of another gene	
Polygenic inheritance	A single phenotypic character is affected by two or more genes	

